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ABSTRACT

Highly maneuverable ocean going vehicles require quick response, control, and
guidance to maintain accurate track keeping characteristics. Ocean vehicles, however, may
experience significant lags in their inertial positional information that limit their reaction
times. This thesis investigates the effects of these lags on guidance and control. The
relationship of critical visibility versus the controller time constant and its effect on the
stability of the guidance/control scheme is analyzed. Results are presented based on time
domain and frequency response techniques using a dynamic model of the Naval
Postgraduate School Autonomous Underwater Vehicle II (NPS AUV ID, for which a

complete set of hydrodynamic coefficients and geometric properties is available.
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I. INTRODUCTION

A. BACKGROUND

Marine vehicles that require high maneuverability, such as
hydrofoils, require quick response, control and guidance to
maintain accurate track keeping characteristics. This 1is
accomplished through successful path planning, navigation,
guidance and autopilot design [Ref. 1].

Sufficient information is obtained from charted obstacles
and the environment for smooth paths to be generated for the
vehicle to follow [Ref. 2]. A certain level of feedback is
provided through.the use of sonar and acoustics in order to
replan a path when uncharted obstacles are encountered or when
the mission objectives are changed. Based on inertial
positional information, the guidance law provides the
appropriate vehicle heading by suitable use of the vehicle
effectors such as fudders, dive planes, and cross body
thrusters. However, lags in obtaining and processing inertial
positional information can limit .vehicle reaction time. In
addition, the guidance law must be as fast as possible in
order to ensure accurate path keeping characteristics [Ref.
3]. Therefore, the stability of the combined guidance/control

scheme becomes an issue that needs to be analyzed.




B. OBJECTIVE OF THIS THESIS

This thesis 1investigates the effects of positional
information time lags on guidance and control. The
relationship of the critical visibility (minimum vehicle
lookahead distance) versus the controller time constant and
its effect on the stability of the combined guidance/control
scheme 1is analyzed. Results are presented based on
computations using time domain and frequency response
techniques. All computations are performed for a dynamic
model of the NPS AUV II [Refs. 4 and 5] for which a complete
set of hydrodynamic coefficients and geometric properties is

available.

C. THESIS OUTLINE

Chapter II presents the vehicle equations of motion in the
horizontal plane, the equations that govern steering control,
and the guidance scheme used in this research.

Chapter III presents the stability analysis based on
eigenvalue computation of the combined guidance and control
scheme developed in Chapter II. Results are presented based
on the stability curves developed for first, second and third
order approximations for time lag in the commanded vehicle
heading in the control law.

Chapter IV presents an exact computation of the stability
curves based on frequency response methods, which utilizes the

Nygquist criterion for stability.



II. EQUATIONS OF MOTION, CONTROLLER DESIGN AND GUIDANCE SCHEME

A. INTRODUCTION

The equations of motion that describe maneuvering of a
marine vehicle in the horizontal plane are presented in this
chapter. A linear full state steering feedback control law is
designed based on the three equations in sway, yaw, and rate
of change of heading angle. The guidance scheme is based on
pure pursuit guidance for path following along straight line

segments.

B. EQUATIONS OF MOTION

Restricting our attention to motion in the horizontal
plane (steering control), the mathematical model consists of
the nonlinear sway and yaw egquations of motion only. With a
moving coordinate frame fixed at the vehicle’s geometric

center, Newton'’s equations of motion are

m(v+ur+x.t-y.r?) =Y (2.1)

I t+mx,(v+ur) -my vr=N (2.2)




where v and r are the relative sway and vaw velocities of the
moving vehicle with respect to the water; m is the mass of the
vehicle; x;, y; are the respective lateral and longitudinal
positions of the center of gravity; and Y,N represent the
total excitation sway force and yaw moment, respectively.
These forces can be expressed as the sum of guadratic drag
terms and first order memoryless polynomials in v and r, which
represent the added mass and damping due to the vehicle’s
motion through the water. In this way, Y and N can be

represented by

Y = '%Q‘th*"gp (Y, v+Y, ur) +-§!2Yvuv

- left:‘z’cpyb(a) —‘lﬁgg—r’ﬁwbiz!amuza

N = -%QsNtf+-%0‘ (N, v+N,ur) +-§Q3N,,uv

nos 3

where ¢ is the vehicle length, and Y,, N, represent partial
derivatives of Y and N with respect to a, C, 1is the drag
coefficient, and 8§ is the rudder angle.

Equations (2.1) and (2.2) can be nondimensionalized with
respect to the constant forward speed u, and the vehicle

length ¢; with the dimensionless time variable being tu/l.




The cross flow integral drag terms become important for
hove.i1ng operations or low speed manuevering, whereas at
relatively high speeds and low angles of attack (with respect
to the water), the steering response is predominantly linear.

The model becomes complete with the addition of the

expressions for the vehicle yaw rate

¢=r (2.3)

and the inertial position rate (horizontal plane)

y=usiny+vcosy (2.4)

where ¥ is the heading angle as shown in Figure 1.
Equations (2.1), (2.2), and (2.3) can be written as a set

of three coupled linear differential equations of the form

Yy=r (2.5a)
v=a,,uv+a,,ur+b,u?d (2.5b)
t=a,,uv+a,ur+b,u?d (2.5¢)




Figure 1. Vehicle Geometry and Definition of Symbols.




where the coefficients a;; and b, are functions of the vehicle

hydrodynamic and geometric properties, ¥ is the heading angle

and & is the rudder angle.

The linearized form of equation (2.4)

y=up+v

Hence, the final set of linearized equations of motion

for steering control are

<
i
N

y 2
v=a,,uv+a,,ur+b,u?d

= 2
r=a,,uv+a,ur+b,u*d

y=up+v

at any nominal u.

This system of equations becomes

controller design.

the basis

(2

(2

(2

(2

for

at a nominal u is

used

.7a)

.7b)

.7¢)

.7d)

the




C. CONTROLLER DESIGN
Equations (2.7a), (2.7b), and (2.7c) govern the steering
control of the model used in this research.

These equations can be represented in the form

%x=Ax+bd (2.8)

where the state vector equation is

x=[y,v,r]T (2.9)

Linear full state feedback is introduced in the form

3=k, (Y-¥_) +k,v+k,r (2.10)

where Y. is the commanded heading angle, and the gains k,, k,,
k, are computed by pole placement such that the closed loop
system of equations (2.8), (2.10) has the desired dynamics.
The existence of the difference (y-y.) in the control law
(2.9) has the effect of trying to point the wvehicle’s
longitudinal axis towards the desired heading.

If the desired characteristic equation is selected so that
its time constant is t. dimensionless seconds, its general

form becomes




A+a,Al+a, A+, = 0 (2.11)

where

The controller gains are computed from

e,

= (2.12a)
(ba,,-b,a,,) u?

k

(b,a,,-b,a,,) u’k,+ (b,a,,-b,a,,) u*k,=a,+b,u?k, (2.12b)

b,u?k,+b,u?k,=-a, - (a,,+a,,) u (2.12c)

Due to the explicit dependence on u, the gains k,, k,, k; are

continuously updated for different nominal forward speeds.

D. GUIDANCE SCHEME
The guidance scheme used 1in this research 1is an

orientation based command scheme. In this scheme, the




commanded vehicle heading angle y. is a function of the line
of sight angle O between the actual vehicle position and a
reference position on the nominal path which is located at a
constant lookahead or visibility distance d ahead of the
vehicle as shown in Figure 1.

This line of sight angle is defined by

tang=-< (2.13)

Ql<

The autopilot is then called upon to deliver the commanded

heading angle y.. The simplest orientation guidance law is
pure pursuit guidance where the commanded heading angle y_. in
the control law (2.9) equals the line of sight angle ¢ in

(2.13).

Then Y. is defined by
¥, = -arctan%’i (2.14)

For relatively small angles

¥, = —arctan—';f g (2.15)

(S

10




This results in a three state heading autopilot design
which can exhibit very robust characteristics. However, the
stability of this scheme may become an issue when transiting
along straight line segments since the commanded heading angle
is a function of the vehicle response, i.e., autopilot
response is limited by time lags in vehicle dynamics. We will

next examine the stability of this scheme.

11




III. EIGENVALUE ANALYSIS

A. INTRODUCTION

In this chapter, we present the stability analysis, based
on eigenvalue computation, of the combined guidance and
control scheme developed in Chapter II. A brief presentation
of the stability curve is developed first for the case of zero
time lag. Incorporation of a nonzero time lag in the
positional information formally results in an infinite state
space system. This is truncated into first, second, and third
order approxima;ions. The resulting eigenvalue problems are

then analyzed with emphasis on stability curves.
B. STABILITY CONSIDERATIONS AND TIME LAG
1. Stability Considerations
In pure pursuit guidance, where the commanded heading
angle Y. in the control law equals the line of sight angle G,

the trivial equilibrium state which corresponds to straight

line motion is characterized by
¢=V=r=y=0 (3.1)

Linearization of the state equations in the vicinity of (3.1)

12




produces the linear system

Xx=Ax, (3.2)

where the complete state vector is

x=[¢,v,r,yl” (3.3)

Local stability properties of (3.1) are then established by
the eigenvalues of A. The characteristic equation of (3.2) is

a quartic of the form

A4+BA2+CA%+DA+E=0, (3.4)

where the coefficients B, C, D, E are functions of the vehicle
properties, the lookahead distance d, and the controller gains
k,, k;, ky;. A pair of complex conjugate roots of (3.4) crosses
the imaginary axis when the following conditions are met

[Ref. 6].

BCD-B2?E-D?%=0, (3.5a)

>0 (3.5b)

wlo

13




These two conditions {(3.5a) and (3.5b) translate to

a,d?+a,d+a,=0, (3.6a)
d> b,a,,-b,a,,-b, (3.6b)
b,a,,-b,a,,
where
a, =, &, —a, (3.7a)
_ (@ @,-2a;) (ba,,-ba,,-b,) _ b,a. «, e’y
: b,a,,-b,a,, (b,a,,-b,a,,)u + (3.7b)

-~ (b,a,,-b,a,,-b,) [b,&,+(b,a,,-b,a,,-b,) ul &,
(b,a,,-b,a,,) %u

a, (3.7¢)

The conditions (3.5a) and (3.5b) determine the critical
visibility d.;. for stability. For d > d.;.. the equilibrium
state (3.1) is stable which means that the control law will
drive and keep the vehicle onto the straight line path. For
d < d.., the equilibrium state loses its stability and the

vehicle response becomes oscillatory as a result of the pair

14




of complex conjugate eigenvalues with positive real parts.

Results of the critical visibility versus the
controller time constant t. for zero time lag are presented in
Figure 2. As expected, the higher values of t. (i.e.,softer
controller) require higher lookahead distances d for path
accuracy. This agrees with existing guidelines that the
guidance law must be sufficiently slower than the controller
in order for the dynamics of the two not to interfere with
each other and, therefore, guarantee stability of the combined
scheme. Very high values of d correspond to a very slow
guidance law with a loss in speed of response and path

accuracy [Ref. 11.

2. Time Lag
In ocean vehicles, all states needed in the control
law are readily available at the required rate, with the
possible exception of the positional information y (Figure 1).
The latter may require a significant data analysis and
reduction of sonar returns and inertial navigational
information. As a result, it is likely that a time lag will
exist in the positional information y which is used in the
guidance law.
With the introduction of a time lag T (sec), the commanded

rudder angle Y. in the pursuit guidance control law becomes

15
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Figure 2. Critical visibility Distance d@ versus t,

Zero Time Lag T.
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Y. = -arctany—(td_—T)- (3.8)

and for relatively small angles

~ _Y(t-T)
V. 5 (3.9)

The resultant rudder control law (2.9) becomes
d=k,y+k, LLET) wp vk, x (3.10)

d

After some algebra, the resultant linearized equations of

motion (2.7a), (2.7b), (2.7c), (2.7d) become

1']:[ (3.11a)
v=b,u’k, ¢ +(a,,u+b,uk,) v+(a,,u+b,uk,) r+b1u2—l;ly( t-1) (3.11b)

t=b,uk, ¢+ (a,,u+b,uk,) v+ (a,,u+b,u?k,) r+b2u25dly( t-T) (3.1lc)

17




y=u¢+v (3.114)

The Taylor expansion for the term y(t-T) is

2 3
y(t-T) = y-T}'NIZ—}?-%}?t.. (3.12)

We can now examine the stability of the previously developed
control scheme for first, second and third order

approximations for time lag in the control law.

C. FIRST ORDER APPROXIMATION FOR TIME LAG

For a first order approkimation for time lag T
y(t-T) & y-Ty (3.13)
where
y=uy+v (3.14)

After some algebra, the resultant linearized equations of

motion (3.1l1la), (3.11b), (3.1l1lc), (3.11d) become

18




]v:r {(3.15a)

k
v= (bluzkl-b1u3% ) ¥+ (anu+b1u2kz-bluz—a¥7’) v+ (a,,u+b,uk,) r+b1u2—};1-y( 3.15b)

k k. k
t= (bzu‘kl-bzu:’-a’-:r’) Ve (a21u+b2u2kz-bzu2-alT) v+ (a,,u+bu?k,) r+bzu2—aly( 3.15¢)

y=ug+v (3.154)
The state space form of the equations of motion is
Xx= (3.16)

In matrix form, (3.15a), (3.15b), (3.15c), (3.15d) become

¥ 0 0 1 0 v
v (bluzkl'blul%n (anu+b1u3k:-b1u3—k-32') (8,urbyuk,y) (bxuz%) v
- d (3.17)
) 4 (b,u’ki-b,u’%’-n (anuob,uzk,-b,u’%ﬂ (au+byuky) (b,u‘%‘-) r
y u 1 0 0 y

The standard eigenvalue problem (3.17) 1is solved to
determine numerically the critical d versus t. curve for a

given value of T. Appendix A presents the program used for

19




the first order approximation for time lag.

Figure 3 shows the resulting stability curves for the
first order case. It shows the relation between the critical
visibility d and the controller time constant t. fcr values of
time lag of 0.0, 0.5, 1.0, 1.5 and 2.0 seconds.

As expected, the stability curve shifts to the right with
increasing values of time lag. For the same time constant t_,
the critical visibility distance increases with corresponding

increases in the amount of time lag.

D. SECOND ORDER APPROXIMATION FOR TIME LAG

For a second order approximation for time lag T, we have

2
y(t-T) = y—T}'/+-1;—j? (3.18)
where

y=uy+v, y=ur+v (3.14), (3.19)

Following some algebra, the resultant linearized equations of

motion (3.1lla), (3.11lb), (3.11lc), (3.11d) become

20
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Figure 3. First Order Approximation For Time Lag:

Critical visibility Distance 4 versus t. for

Time Lags T = 0.0, 0.5, 1.0, 1.5, 2.0 sec.
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y=r (3.20a)
V=A,, U +A,,V+A,, T+A, Y (3.20b)
£=A,, Y +A,,V+A,, T+Ay Y (3.20¢)
y=uy+v (3.204)
where
k
bluzkl—bIUB—le
AZI = kl ’
1-b.y2—_L 72
W 2aT

k
a,,u+b,u’k,-b,u? _31 T

k
l-bluzz_-éTz

k
a,,u+b,uk,+b,u’ == T2
= 2d
A23 = kl 4
1- 2 T2
byu 2d”

22




k
A, = (bzuzkl-‘bzu3?1T)+(b2u2

e

A,, = (a,u+b,uk,-b,u? 3

k
A, = (a22u+b2u2k3+bzu3?éT2) +(b,

k
A, = (bzuz—al) +(b,u?

As with the first order case,

motion reduce to

k
T +(b,u

k.
K (b,u?k, —b1u3—d1 T)
—XT?)
2d

r

-ﬁT"‘)

- 2
(1-b,u >d

(a,,u+b,uk, —bluz% T)

k
2_1_T2) ,
d _kiTZ)

(1-b,u? >4

k
(a,,u+b,uk, +b1u3—2—;T2)

k
u?=21?)
2d K
(1-b,u ——sz )
k (byu?2)
1 TZ) d
2d (1-b,u? 23 12)
1" 2d

the state space equations of

23




Xx=Ax (3.16)

In matrix form, (3.20a), (3.20b), (3.20c), (3.20d) become
¥ 0 0 1 0 ¥
\'4 AZ 1 A22 A23 A24 \'4
= (3.21)
r Ay, Ay A Ay, r
y u 1 0 0 y

Simular to the first order case, the standard eigenvalue
problem (3.21) i3 solved using Fortran programming and MATLAB
in order to develop the stability characteristics of the
second order case. Appendix B presents the program used to
develop the stability characteristics for this case.

Figure 4 shows the resulting stability curves for this
case. The results of the critical visibility d wversus the
controller time constant t. for time lags of 0.0, 0.5, 1.0,
1.5 and 2.0 secs are shown.

As with the first order case, the higher values of t_
require higher lookahead distances d for path accuracy. High
values of d correspond to a slow guidance law with a loss in
speed of response and path accuracy, and the stability curve

shifts to the right with increasing values of time lag.

24
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d
Figure 4. Second Order Approximation For Time Lag:
Critical visibility Distance 4 versus t, for
1.0, 1.5, 2.0 sec.

= 0.0, 0.5,

Time Lags T
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However, due to being more accurate than the first order case,
the second order approximation provides tighter stability

curves for the same time lags.

E. THIRD ORDER APPROXIMATION FOR TIME LAG

For a third order approximation for time lag T

2 3
y(t-T) = y—j‘;'u-%j}—%.i (3.22)

where

y=uy+v, y=ur+v, y=ur+¥ (3.14), (3.19), (3.23)

After a considerable amount of algebra and following a simular
procedure as with both the previous two cases, the resultant

linearized equations of motion reduce to the state space form

Bx=Ax (3.24)

or

Xx=B~lAx

26




The resultant linearized equations of motion

(3.11b), (3.11lc),
By, +B,y5V,
By +Bs5V,
where

A

(3.11d) become

= A, Y+A,,V, +A;, V,+Ay  T+A Y

= A5, Y+Ag, Vi +A Vo +Ag T +A Y

“y=uy+v,

k
By, = b1u36—;T3

By, = bluzs—éiTa

4 = butk,-bu?ZLiT

27
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k
A,, = a,u+buk,-b,u? ?1 T

k
A,, = a,u+b,u?k;+b,u? 2—:1 T?

k
A,, bluz—a1
k
A, = bluz—z-éTz—l

and

So
b
1

k
= 1+}::2u3-6—(1]’1'3

k
BSS = bzuzs—éfz-'3

k
A, = bu?-bu*=T

k
A, = a,,u+b,u’k, -bzuZ?1 T

28




k

2d
k
A, bzuz---d—1
k
A55=b2u22—éT2
In matrix form, (3.25a), (3.25b), (3.25c), (3.254d), (3.25e)
become
1 0 0 0 O ¥ 0 o 1 o0 o ¥
o1 0 0 o0 v, o o o o0 1]|w
0 0 B,; 0 By tl=] Ay Ay Ay Ay Ay, r| (3.26)
0 0 0 1 0 y u 1 0 0 0 y
6 0 B; 0 B v A5, A, Ay A Ag Va2

Simular to both the first order and second order cases,
the generalized eigenvalue problem (3.21) 1is solved using
Fortran programming and MATLAB in order to develop the
stability characteristics for the third order case. Appendix
C presents the program used to develop the stability
characteristics for this case.

Figure 5 shows the resulting stability curves for this

29
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Figure 5. Third Order Approximation For Time Lag:

Critical visibility Distance 4 versus t, for
0.0, 0.5, 1.0, 1.5, 2.0 sec.

Time Lags T
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case. The results of the critical visibility d versus the
controller time constant t. for time lags of 0.0, 0.5, 1.0,
1.5 and 2.0 seconds are shown. As with the first and second
order cases, the higher values of t. require higher lookahead
distances d for path accuracy, high values of d correspond to
a slow guidance law with a loss in speed of response and path
accuracy, and the stability curve shifts to the right with
increasing values of time lag. However, due to being more
accurate than either of the other two cases, the third order
approximation provides the tightest stability curves for the

same time lags.

F. COMPARISON OF RESULTS

Results of the critical visibility d versus the controller
time constant t. for first, second and third order
approximations for time lag have been obtained. Figures 3, 4
and 5 presented the stability curves for first, second and
third order approximations for time lags of 0.0, 0.5, 1.0, 1.5
and 2.0 secs. These figures have shown that stability of the
control scheme decreases with increasing time lag, and for the
same time constant, the critical visibility distance increases
with increasing time lag.

Figures 6, 7, 8 and 9 present a comparison of first,
second and third order approximations for each time lag
considered. These figures show that for each time lag, the

third order model presents the largest region of stability for
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vehicle straight line path accuracy. In addition, for the
same time constant, the critical visibility is least for the
third order case. This demonstrates that the minimum
lookahead distance required for straight line motion stability
decreases with controller time lag accuracy.

It can be seen that the first order approximation is the
most conservative for design purposes since it predicts the
highest required minimum visibility distance. As expected,
the differences among the three approximations are more
pronounced as the time lag increases and as the controller
time constant becomes smaller; i.e., tighter control.

Figures 10, 11, 12 and 13 present the differences in
critical visibilities among first, second and third order
approximations for each individual time lag considered. A
comparison of these figures demonstrates that the difference
in critical visibility between respective orders (time lag
models) decreases with decreasing time lag. This indicates
that for low time lags, controller time lag accuracy is not as
crucial for maintaining vehicle straight line path accuracy as
that of higher time lags. The greater the time lag, the
greater the difference in critical visibilities among time lag
models, and the more crucial is the controller time lag
accuracy for stability.

In general, if the guidance law is slow enough to allow
sufficient time for the controller to react, stability of

straight line motion is guaranteed [Ref. 1].
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G. NORMALIZATION OF RESULTS

In an attempt to characterize the stability analysis
results for all values of time lag, we proceed as follows: If
the vehicle side slip velocity v is very small so that it can
be neglected, the equations of motion (2.7a), (2.7b), (2.7c),

and (2.7d), take the form

=
1]
N

= 2
t=a,,ur+b,u?d

y=uy

since v = 0. The control law is

6=k:|_ (‘l‘-‘l,c) +k3r’

where the first order approximation for the commanded heading

angle 1is

Based on the above equations, we can get the characteristic
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equation of the system as

53'(azzu*bzk3“2)Sz‘(bzkluz‘bzk1“3T%1)S‘bzkluhiq =0.

Applying Routh’s criterion to this cubic equation, we find

that loss of stability occurs when

(@, u+b,k,u?) (bzkluz—bzklu:‘T?li) = -b2k1u3711,

from which we can get the critical visibility distance
_ 1
d= ———  + Tu (3.27)

a,,+b,kyu

Equation (3.27) can be written as

u, (3.28)

where d, is the critical visibility distance for T = 0, and d,
the critical visibility distance for a nonzero T. In

dimensionless quantities, equation (3.28) is
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dr=dy _ 1 (3.29)

where u = 2.0 ft/sec is the vehicle speed, and & = 7.3 ft is
the vehicle length.

A comparison among the approximate expression (3.29) and
the first, second, and third order approximations is shown in
figures 14, 15 and 16. The agreement is better for the first
order approximation, as expected, and also for the higher
controller time constant t.. This is because a high t. results

in soft vehicle response with negligible amounts of side slip.
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IV. FREQUENCY RESPONSE ANALYSIS

A. INTRODUCTION

The previous analysis using Taylor expansions of y(t-T)
breaks down for approximations beyond third order. The reason
for this is that for higher than third order expansions, the
matrix B in the generalized eigenvalue problem (3.23) becomes
singular. Therefore, it was felt that a different technique
should be sought in order to obtain an exact computation of
the stability curves and also to check the validity of our
calculations. In this chapter, we present a technique based
on frequency response methods, which utilizes the Nyquist
criterion for stability. The resulting equation 1is solved

using Newton’s iteration.

B. NYQUIST CRITERION
From our previously developed model, the linearized

horizontal equations of motion are

¥=r (2.7a)
v=a,,uv+a,,ur+b,u?d : (2.7b)
47




t=a,,uv+a,,ur+b,u?d (2.7c)
y=uy+v (2.74)

at any nominal u. The contrcl law is
8=k, (y-¥ ) +k,v+k,r (2.10)

where the commanded heading angle is

pom- XD (3.9)

The Laplace transform of equation (3.9) is

Y, = -%e-fs (4.1)

and the resultant rudder control law (2.10) becomes

6=k1t|:+k2v+k3r+-%ye"-’" (4.2)

Following some algebra, the resultant linearized equations of
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motion (2.7a), (2.7b), (2.7c), (2.7d) become

Y=r (4.3a)

k. -
w(bluzki—blu’%r) P+ (anu+b1u2k2-b1u2—dlr) v+ (a,,u+b,uk,) I+b1u2%‘ye"" (4.3b)

i= (bzu’ki-b,u’%r) v+ (@, u+b,u3k, -bzuzl‘alr) v+ (a,,u+byuk,) r+bzu3-%ye"" (4.3c)

y=up+v (4.3d)

Equations (4.3a), (4.3b), (4.3c), (4.3d) reduce to the state

space form

X= {(3.16)
The matrix form becomes:
¥ 0 0 1 0 A4
k
v _ (byu?k,) (a,,u+b,uk,) (a,u+b ,uk,) (blu’—ale"’") v (4.4)

4 (b,u?k,) (&, u+buk,) (a,u+b,uk;) (b,uz%e‘") r

u 1 0 0
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The characteristic equation of the form [A-Is] = 0 becomes

after a considerable amount of algebra

s4+A,s*+A,s%+A,5+(B,s?*+B,s+B,) De ™ = 0 (4.5)

where

A, = -(ay;+a,) u - (b k,+b,k;) u?

A, = (a,,8,,-4,,8,,) u?+(a,,b,-a,,b,) uk,+(a,,b,-a,,b,) u’k,-b,u?k,

A, = -(ay,b;-a,,b,) u*k,De - (a, b, -a,,b,) u’k,

B, = ~b,u?k,

B, = bu’k,

B, = (a,,b,-a,,b,) uk, .

and

Q-
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The characteristic equation of the system is written as

1 +KG(s) =0 (4.6)

where

(B,s%+B,s+B,) e T*

G(s) = (4.7)
s(s3+A,s2+A,5+A,)
is the transfer function, and we have denoted
K=D (4.8)
With s=jw, the phase angle ¢ is represented by
¢ = LG(jw) (4.9)

and it follows that

$ = L(e™°) - L(jw) + L(-B,0*+B,jw+B,) - L(-Jw?-A,0*+A,jw+A,)

B,w -3 +A,0
¢=-07-2 +tan?(—2" ) - tant(——2—) (4.10)
2 B,-B,w? ~A, 0 +A,
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For stability, the Nyquist criterion states (Figure 17) that

at the solution of the equation

o(w) = -=n (4.11)

which is phase cross over frequency ® = ®,, the gain margin

must be equal to 1

|kG(jw,) | =1 (4.12)

where K = D = 1/d. It follows that equation (4.11l) becomes

B,® —0i+A,®
~0,7-Zrtan (221 pan1 (TR0 - g (4.13)
BO—BZ(‘)]. -A3(D1+A1
Rearranging, we get
B -~0l+A,0
tan'l(#;)-tan‘l(—#) = -n+Z 40, T
By-B,w; -A 01 +A, 2

Taking the tangent of both sides and using the identity

tan(x) -tan(y)
1+tan(x) tan(y)

tan({x-y) =
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Three Different Values of Gain [Ref. 7].
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and rearranging following some algebra, the result becomes

B0, (A,-A,03) ~(By-B,01) (-01+2,0,) _ _ 1
(By-B,0?) (-A,wi+A,) +B,0, (-0]+A,0,) tan(w, ) (4.14)

From equation (4.12), it follows that

1 |-B,03+B,j@, +B| =
d W, |-jwi-A,0i+4,j0,+A,|

Solving for d, we get

y (Bo-B,w?) 2+B 0}

d-= (4.15)
0,y (A,-A,03) 2+ (3,0, -w]) 2
With a time lag T = 0, we get from equation (4.14)
(B,-B,w?) (A,w?+A,) + B0, (-wi+A,0,) =0
Rearranging, we get
(B,A,-B,) w} + (B,A,-B,A -ByA,) w: + B,A, = 0 | (4.16)
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Equation (4.16) can be solved exactly for ¢ and then d
can be computed from (4.15). This zero time lag calculation
was performed in order to validate the results of 4 versus t.
for the zero time lag solution of equation (3.6). The results

using the two different techniques were found to be identical.

C. ALGORITHM DESCRIPTION

Introducing the terms

@, = B,A;-B,

@, = B)A,~B,A, -BjA,

@; = ByA,
and
B, = -B,
B, = BA,-ByA,

B, = B,+B,A,-B,A,
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Then equation (4.12) becomes

B,0°+B,0°+pf,0 - 1 (4.17)

o, 0l+a,0’+a, tan(w7)

Rearranging, we get
(B, +f,0’+f,0) tan(w7?) + a0+, 02 + @, =0 (4.18)
Equation (4.18) 1is now in the form

f(w) =0 (4.19)

Following Newton’s iteration for ®, we have

£l@y.,)
W, =W, , - —=—= (4.20)
TR Tl e,,)
From equation (4.20),
f(w) = (B,w+p,w0*+B,w)sin(wT)
P.0®+P,0>+B, (4.21)

+ (a,0*+a,0?*+a,) cos (wT)
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and

f'(w)

(58,w*+3p,w%+P,) sin(wT)

+

(B,w°+B,w%+B.w) Tcos(wT)
Bw’+B,w3+P, (4.22)

+

(4a,0°+2a,0) cos (0 T)

(@, w*+a,0%+a,) Tsin (@ 7T)

Fortran programming and MATLAB were used in order to
develop the stability characteristics for the Newton'’s
iteration method. Appendix D presents the program used to
develop the stability characteristics for this case.

Figure 18 shows the resulting stability curves for the
Newton’s iteration method. The results of the critical
visibility d versus the controller time constant t. for time
lags of 0.0, 0.5, 1.0, 1.5, and 2.0 secs are shown.

As with the first, second and third order approximation
cases, the higher wvalues of t. require higher 1lockahead
distances d for path‘accuracy, high values of d correspond to
a slow guidance law with loss in speed of response and path
accuracy, and the stability curves shift to the right with
increasing values of time lag. However, since the Newton’s
iteration method presents the exact solution of the frequency

response to equation (4.19), the resulting stability curves
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represent the precise stability characteristics for these time

lags.

D. RESULTS AND DISCUSSION

Results of the critical visibility d versus the controller
time constant t. for the Newton’s iteration method has been
demonstrated. Figure 18 presented the precise stability
curves for time lags of 0.0, 0.5, 1.0, 1.5 and 2.0 secs.

This figure, as well as those for the first, second and
third order approximation cases, demonstrates that the
stability of the control scheme decreases with increase in
time lag and for the same time constant, critical visibility
increases with increase in time lag.

Figures 19, 20, 21, 22 and 23 present a comparison of
generated stability curves among the Newton'’s iteration method
and those for the first, second and third order approximation
cases for time lags of 0.0, 0.5, 1.0, 1.5 and 2.0 secs. It
can be seen that there is barely a slight difference in the
stability curves for the Newton’s iteration method case and
the third order approximation case. This indicates that a
third order approximation for time lag presents the best model
for accounting for a positional information time lag in the

vehicle control law.
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CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A methodology for considering positional information time
lags in the control law for vehicle maneuvering in the
horizontal plane has been presented. The relationship of the
critical visibility versus the controller time constant for
both zero and non-zero time lags has been established.

Time lags have been approximated by first, second and
third order Taylor expansions in the commanded vehicle heading
in the control law. A comparison of the resulting stability
curves has demonstrated that the third order approximation
presents the greatest stability and the least critical
visibility for a given time lag. It was found that the first
order approximation was the most conservative for controller
design purposes since it predicted the highest required
critical visibility distance. 1In addition, the differences
among the three approximations became more pronounced with
increasing time lag and decreasing controller time constant
(tighter control).

Further analysis was conducted to characterize the
stability results for any value of time lag wusing a
normalization procedure and the first érder approximation for

time lag in the commanded vehicle heading in the control law.
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A comparison of the normalized stability curves for each time
lag showed that the greatest differences occur with increasing
order and decreasing controller time constant. This is due to
a tight (quick) vehicle response with significant side slip at
lower time constants.

Frequency response techniques based on the Nyquist
stability criterion were used to produce the exact stability
curves for comparison with the previously generated Taylor
expansion stability curves. These results virtually matched
those obtained for the third order approximation time lag case
and validated our calculations and stability curves generated
for the case of zero time lag. These results indicated that
the third order approximation best represents a positional
information time lag in the control law, however for design
purposes, the first order approximation provides the most

conservative approach.

B. RECOMMENDATIONS
Some recommendations for further research are as follows:

* Experimental verification using the NPS AUV II.

* Consideration of time lag in the simulation of an Inertial
Navigation System required for positional updates.

* Analysis of positional information time lags in the motion
stability ir the vertical plane, along curved paths, or

with respect to other guidance schemes.
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APPENDIX A

PROGRAM THESIS!1.FOR (Time Delay-1st Order Approx)
BIFURCATION ANALYSIS

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION K1,K2,K3,L,NR,NV,NDRS,NDRB, 1Z,MASS,
& NRDOT,NVDOT

DIMENSION A(4,4),FV1(4),1IV1(4),222(4,4),WR(4),WE(4)

OPEN (11,FILE='BIF1.RES’,STATUS='NEW’')
OPEN (12,FILE='BIF2.RES’,STATUS='NEW’)
OPEN (13,FILE='BIF3.RES’,STATUS='NEW')

Vehicle Parameters:
WEIGHT=435.0

12 =45.0
L =7.3
RHO =1.94
G =32.2

XG =0.0104
MASS =WEIGHT/G

YRDOT =-0.00178%0.5*RHO*L**4
YVDOT =-0.0343040,.5*RHO*L#**3
YR =+0.01187+0 . 54RHO*L##*3
v =-0.03896*0.5%RHO*L#*#2
YDRS =+0.0234540,5*RHO*L*42
YDRB =+0.02345%0 . 54RHO*L**2
NRDOT =-0.00047*0.5*RHO*L**5
NVDOT =-0.00178+0.5*RHO*L**4
NR =-0.01022%0.5*RHO*L**4
NV =-0.00769*%0,5*RHO*L**3
NDRS =-0.337%0.02345*0.5*RHO*L**3
NDRB =+0.283%0.02345%0.5*RHO*L**3

WRITE (*,1001)

READ (*,*) TCMIN, TCMAX, ITC
WRITE (*,1002)

READ (*,*) XDMIN, XDMAX, IXD
XDMIN=XDMIN*L

XDMAX=XDMAX*L

WRITE (*,1003)

READ (*,*) U

WRITE(*,1100)
READ (*,*) TL

DH =(IZ-NRDOT)*(MASS-YVDOT)-

& {MASS*XG-YRDOT ) * { MASS *XG-NVDOT)
AAll=({(I2-NRDOT)*YV-(MASS*XG-YRDOT)*NV)/DH
AAl2=( (IZ-NRDOT)*(-MASS+YR)-

& (MASS*XG-YRDOT) *(~-MASS*XG+NR) ) /DH
AA21l=( (MASS-YVDOT)*NV-(MASS*XG-NVDOT) *YV) /DH
AA22=( (MASS~-YVDOT) *(-MASS*XG+NR ) -

& (MASS*XG-NVDOT) *(-MASS+YR) ) /DH
BBll=((1Z-NRDOT)*YDRS-(MASS*XG-YRDOT)*NDRS ) /DH
BB12=((IZ-NRDOT)*YDRB-{MASS*XG-YRDOT) *NDRB) /DH
BB21l=( (MASS-YVDOT) *NDRS-{MASS*XG~-NVDOT) *YDRS) /DH
BB22=( (MASS-YVDOT) *NDRB- (MASS*XG-NVDOT) *YDRB) /DH

WRITE (*,1004)
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READ (*,*) RATIO

BBl1=BB11+RATIO*BB12
BB2=BB21+RATIO*BB22

EPS =1.D-5
ILMAX=1500

DO 1 I=1,ITC
WRITE (*,2001) I,ITC
TC=TCMIN+(1-1)*(TCMAX-TCMIN)/(ITC-1)
TCD=TC*L/U
POLEC=1.0/TCD
ADl1=3.0*POLEC
AD2=3.0*POLEC*#2
AD3=POLEC**3
Al=BBl*U*U
Bl=BB2*U*U
Cl=-AD1-(AAl1+AA22)*U
A2=(BB1*AA22-BB2*AA12)*U**3
B2=(BB2*AA11-BB1#AA2]1)*UA*3
K1=AD3/((BB2*AALl1-BB1*AR21)*U*%3)
C2=AD2-(AA11*AR22-AA12*AA2]1 ) *U**2+BB24U*UAK]
K2=(C1%B2-C2*Bl1)/(A1*B2-A2*Bl)
K3=(C2*A1-C1*A2)/(Al*B2-A2*Bl)
DO 2 J=1,IXD

XD=XDMIN+(J-1)*(XDMAX-XDMIN)/(1IXD-1)

CALL LINEAR(K1,K2,K3,U,XD,AAl1,AA12,AA21,AA22,BB1,BB2,A,TL)
CALL RG(4,4,A,WR,WI,0,222,IV1,FV1,IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

IF (J.GT.1) GO TO 10
DEOSOO~DEOS

XDOO0 =XD

LL=0

GO TO 2

DEOSNN=DEOS

XDNN =XD
PR=DEOSNN*DEQSOO

IF (PR.GT.0.D0) GO TO 3
LL=LL+1 .

IF (LL.GT.3) STOP 1000
IL=0

XDO=XDOO

XDN=XDNN
DEOSO=DEOSOQ0
DEOSN=DEOSNN

XDL=XDO

XDR=XDN

DEOSL=~DEOSO
DEQOSR=DEOSN
XD=(XDL+XDR)/2.D0

CALL LINEAR(K1,K2,K3,U,XD,AAll,AA12,AA21,AR22,BB1,BB2,A,TL)
CALL RG(4,4,A,WR,WI,0,222,1IV]1,FV],IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM=DEOS
XDM=XD
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PRL=DEOSL*DEOSM
PRR=DEOSR*DEOSM
IF (PRL.GT.0.D0) GO TO 5
XDO=XDL
XDN=XDM
DEOSO=DEOSL
DEOSN=DEOSM
IL=1L+1
IF (IL.GT.ILMAX) STOP 3100
DIF=DABS (XDL-XDM)
IF (DIF.GT.EPS) GO TO 6
XD=XDM
GO TO 4
) IF (PRR.GT.0.D0) STOP 3200
XDO=XDM
XDN=XDR
DEOSO=DEOSM
DEOSN=DEOSR
IL=IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF=DABS ( XDM-XDR)
IF (DIF.GT.EPS) GO TO 6

XD=XDM
4 LLL=10+LL
WRITE (LLL,*) XD/L,TC
3 XDOO=XDNN
DEOSOO=DEOSNN
2 CONTINUE
1 CONTINUE

1001 FORMAT
1002 FORMAT
1003 FORMAT
1004 FORMAT ENTER BOW/STERN RUDDER RATIO’)
1100 FORMAT ENTER TIME LAG TL')
2001 FORMAT (21I5)

END

ENTER MIN, MAX, AND INCREMENTS OF TC’)
ENTER MIN, MAX, AND INCREMENTS OF XD’)
ENTER U’)

T

—— o~ -

SUBROUTINE DSTABL(DEOS,WR,WI,OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION WR(4),WI(4)
DEOS=-1.0D+20
DO 1 1=1,4
IFf (WR(I).LT.DEOS) GO TO 1
DEOS=WR(1I)
IJ=1
1 CONTINUE
OMEGA=WI(1J)
OMEGA=DABS (OMEGA)
RETURN
END

SUBROUTINE LINEAR(K1,K2,K3,U,XD,AAll,AR12,AA21,AA22,BB1,BB2,A,TL)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DOUBLE PRECISION K1,K2,K3

DIMENSION A{4,4)

A{l1,1)=0.0D0

A(1,2)=0.0D0

A(1,3)=1.0D0

A{1,4)=0.0D0
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A(2,1)= BB1*U*U*K1*(XD-U*TL)/XD
A(2,2)=U*(BBl1*U*(K2*XD-K1*TL)+AA11+XD)/XD
A(2,3)=AA12+U+BBl*U*U*K3

A(2,4)=- BBl#*U*U*K1/XD

A(3,1)= BB2*U*U*K1*(XD-U*TL) /XD
A(3,2)=U*(BB2#U*(K2*XD-K14TL)+AA214XD) /XD
A(3,3)=AA22*U+BB2*U*U*K3

A(3,4)- BB2*U*U*K1/XD

A(4,1)=U

A(4,2)=1.0D0

A(4,3)=0.0D0

A{4,4)=0.0D0

RETURN

END
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APPENDIX B

PROGRAM THESIS2.FOR (Time Delay-2nd Order Approx)
BIFURCATION ANALYSIS

IMPLICIT DQUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION K1,K2,K3,L,NR,NV,NDRS,NDRB, 1%, MASS,
& NRDOT,NVDOT

DIMENSION A(4,4),FV1(4),1V1(4),222(4,4),WR(4),WI(4)

OPEN (11,FILE='BIF1.RES’,STATUS='NEW’)
OPEN (12,FILE='BIF2.RES’,STATUS='NEW')
OPEN (13,FILE='BIF3.RES’,STATUS=’'NEW’)

Vehicle Parameters:

WEIGHT=435.0
12 =45.0
L =7.3

RHO =1.94
G =232.2

XG =0.0104
MASS =WEIGHT/G

YRDOT =-0.00178*0.5*RHO*L**4
YVDOT =-0.03430+40.5*RHO*L#*43
YR =+0.01187*0,5*RHO*L**3
YV «-0.03896*0.5*RHO*L*42
YDRS =+0.02345%0.5*RHO*L*#2
YDRB =+0.02345%0.5%RHO*L**2
NRDOT =-0.00047%0.5*RRO*L#**S
NVDOT =-0.00178#0 5+RHOAL**4
NR =-0.01022%0.5*RHO*L**4
NV =-0.00769*0,.5*RHOAL**3
NDRS =-0.337+0,02345*%0.5*RHO*L**3
NDRB =+0.283%0.02345*%0.5*RHO*L**3

WRITE (*,1001)

READ (*,*) TCMIN, TCMAX, ITC
WRITE (*,1002)

READ (*,*) XDMIN, XDMAX, IXD
XDMIN=XDMIN*L

XDMAX=XDMAX*L

WRITE (*,1003)

READ (*,?*) u

WRITE(*,1100)
READ (*,*) TL

DH =(IZ-NRDOT)*(MASS-YVDOT)-

& (MASS*XG—-YRDOT) * (MASS*XG-NVDOT)
AAll=((IZ~NRDOT)*YV-(MASS*XG-YRDOT)*NV) /DH
AAl2=((IZ-NRDOT)*(-MASS+YR)~-

& (MASS*XG~-YRDOT) *(-MASS*XG+NR) ) /DH
AA21=( (MASS-YVDOT) *NV-(MASS*XG-NVDOT) *YV) /DH
AA22=( (MASS-YVDOT) *(~-MASS*XG+NR) -

& (MASS*XG-NVDOT) * (-MASS+YR) ) /DH
BBl1l=((IZ-NRDOT)*YDRS~(MASS*XG-YRDOT)*NDRS ) /DH
BB1l2=( (IZ-NRDOT)*YDRB- (MASS*XG-YRDOT)*NDRB ) /DH
BB21=( (MASS-YVDOT) *NDRS~( MASS*XG-NVDOT) *YDRS ) /DH
BB22=( (MASS-YVDOT) *NDRB-({MASS*XG-NVDOT) *YDRB ) /DH

WRITE (*,1004)
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READ (*,*) RATIO

BB1=BBl1+RATIO*BB12
BB2=BB21+RATIO*BB22

EPS =1.D-5
ILMAX=1500

DO 1 I=1,ITC
WRITE (*,2001) I,ITC
TC=TCMIN+(I-1)*({TCMAX-TCMIN)/(ITC-1)
TCD=TC*L/U
POLEC=1,0/TCD
ADl=3.0*POLEC
AD2=13,0*POLEC**2
AD3=POLEC*#43 '
Al=BBl*U*U
Bl=BB2*U*U
Cl=-AD1-(AA11+AA22)*U
A2=(BB1*AA22-BB2*AA12)*Uns3
B2=(BB2*AA11-BB1*AA2]1)*y4xr]
K1=AD3/((BB2*AA11-BB1*AA2]1)*Ur*3)
C2=AD2-(AAL14AA22-AA12*AA2]1)*U*424+BB24UrU*Kl
K2=(Cl14B2-C2*Bl)/(A1*B2-A2+*Bl)
K3=(C2+4A1-C1*A2)/(Al1*B2-A2#*B1)
DO 2 J=1,1XD

XD=XDMIN+(J-1)*(XDMAX-XDMIN)/(IXD-1)

CALL LINEAR(K1l,K2,K3,U,XD,AAll1,AA12,AA2]1,AA22,BB1,BB2,A,TL)
CALL RG(4,4,A,WR,WI,0,222,1IV]1,FV]1,IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

IF (J.GT.1) GO TO 10
DEOSOO=DEOS

XDOO =XD

LL=0

GO TO 2

DEOSNN=DEOS

XDNN =XD
PR=DEOSNN*DEOSOO

IF (PR.GT.0.D0) GO TO 3
LL=LL+1

IF (LL.GT.3) STOP 1000
IL=0

XDO=XDO0O

XDN=XDNN
DEOSO=DEOQOS00
DEOSN=DEOSNN

XDL=XDO

XDR=XDN

DEOSL=DEOSO
DEOSR=DEOSN

XD={ XDL+XDR) /2.D0

CALL LINEAR(K1,K2,K3,U,XD,AAll,AAl12,AMA21,AA22,BB1,BB2,A,TL)
CALL RG(4,4,A,WR,WI,0,222,1IV]1,FV]1,IERR)
CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM=DEOS
XDM=XD
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PRL=DEOSL*DEOSM
PRR=DEOSR*DEOSM
IF (PRL.GT.0.D0) GO TO S
XDO=XDL
XDN=XDM
DEOSO=DEOSL
DEOSN=DEOSM
IL=IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF=DABS( XDL-XDM)
IF (DIF.GT.EPS) GO TO 6
XD=XDM
GO TO 4
5 IF (PRR.GT.0.D0) STOP 3200
XDO=XDM
XDN=XDR
DEOSO=DEOSM
DEOSN=DEOSR
IL=IL+1
1f (IL.GT.ILMAX) STOP 3100
DIF=DABS( XDM-XDR)
IF (DIF.GT.EPS) GO TO 6

XD=XDM
4 LLL=10+LL
WRITE (LLL,*) XD/L,TC
3 XDOO=XDNN ’
DEOSOO=DEOSNN
2 CONTINUE
1 CONTINUE

1001 FORMAT
1002 FORMAT
1003 FORMAT
1004 FORMAT ENTER BOW/STERN RUDDER RATIO')
1100 FORMAT ENTER TIME LAG TL')
2001 FORMAT (215)

END

ENTER MIN, MAX, AND INCREMENTS OF TC’)
ENTER MIN, MAX, AND INCREMENTS OF XD’)
ENTER U’)

- ® w w o=

SUBROUTINE DSTABL(DEOS,WR,WI,OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION WR(4),WI(4)
DEOS=-1.0D+20
DO 1 1=1,4
IF (WR{I).LT.DEOS) GO TO 1
DEOS=WR(1)
I1J=1
1 CONTINUE
OMEGA=WI(1J)
OMEGA=DABS (OMEGA)
RETURN
END

SUBROUTINE LINEAR(K1,K2,K3,U,XD,AAll,AA12,AA21,AN22,BB1,BB2,A,TL)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION K1,K2,K3

DIMENSION A(4,4)

A(1,1)=0.0D0

A(l1,2)=0.0D0

A(l1,3)=1.0D0

A{1,4)=0.0D0
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A(2,1)=(BBlAUAUAK1-BBlAUAUAU*KL*TL/XD)/
(1-BBlAUAUAK1*TLATL/(2.D0*XD))
A(2,2)=(AA11*U+BBl*U*UAK2-BB1*U*U*K1*TL/XD)/
(1-BBlAUAU*K1*TL*TL/(2.D0*XD))
A(2,3)=(AAL2*U+BBl*UAUXK3I+BBl*U*UAUAKLIATLATL/(2.D0*XD))/
(1-BBlAUAU*K1*TL*TL/(2.D0*XD))
A(2,4)=(BBLAUAU*K1/XD)/
(1-BB1*U*U*K1*TL*TL/(2.DO*XD))
A(3,1)=(BB24U*UAK1-BB2*U*UAUAK1*TL/XD)+

& (BB2*U*UXKLATL*TL/(2.D0*XD))*

& (BB1*UAUXK1-BB1*U*UsU*K1*TL/XD)/

& (1-BB1AUAU*K1*TL*TL/(2.D0*XD))
A(3,2)=(AA214U+BB24UAU*K2-BB2*U*U*K1*TL/XD)+

& (BB2AUAURKLATLATL/(2.DO*XD) )+

& (AR11%U+BBl*U*U*K2-BBl*UAU*K1ATL/XD)/

& (1-BB1*U*U*K1+*TL*TL/{2.D0*XD))

&
&
&

&
&

A(3,3)=(AA22+U+BB2*UAU*K3+BB2*U*U*U*K1*TL*TL/(2.D0*XD) )+
(BB2*U*U*K1*TL*TL/(2.D0*XD))*
(AA12*U+BBl*U*U*K3+BBl1*UAU*U*K1ATL*TL/(2.D0*XD))/
(1-BBl*U*U*K1*TL*TL/(2.D0*XD))

A(3,4)=(BB2*U*U*K1/XD)+(BB2*U*U*K1*TL*TL/(2.D0*XD))*
(BB1*U*U*Kl/XD)/

(1-BBL*U*UAK1*TL*TL/(2.D0*XD})

A(4,1)=U

A(4,2)=1.0D0

A(4,3)=0.0D0

A(4,4)=0.0D0

RETURN

END
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APPENDIX C

PROGRAM THESIS3.FOR (Time Delay-3rd Order Approx)
BIFURCATION ANALYSIS

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DOUBLE PRECISION K1,K2,K3,L,NR,NV,NDRS,NDRB,I2,MASS,

& NRDOT,NVDOT
DIMENSION A(5,5),B(5,5),FV1(5),1IVv1(5),222(5,5),ALFR(5),
& ALFI(5),BETA(S) ,WR(5),WI(5)

OPEN (11,FILE='BIF1.RES’,STATUS='NEW')
OPEN (12,FILE='BIF2.RES’,STATUS='NEW')
OPEN (13,FILE=’'BIF3.RES’,STATUS='NEW')

Vehicle Parameters:
WEIGHT=435.0

12 =45.0
L =7.3
RHO =1.94
G =32.2

XG =0.0104
MASS =WEIGHT/G

YRDOT =-~0.00178+%0.5*RHO*L*#*4
YVDOT =-0.03430%0.5*RHO*L**]
YR =+0.0118740.5*RHO*L*#3
Yv =»~-0.03896*0.5*RHO*L**2
YDRS =40.0234540,5*RHO*L**2
YDRB =+0.0234540.5*RHO*L*#2
NRDOT =~0.0004740.5%RHO*L**5
NVDOT =-0.0017840.5*RHO*L*#*4
NR =~0.01022*%0.5*RHO*L**4
NV =»~0.00769*0.5*RHO*L**3
NDRS =-0.33740.02345+0.5*RHO*L**3
NDRB =+0.283%0.02345%0.5+*RHO*L**3

WRITE (*,1001)

READ (*,*) TCMIN, TCMAX,ITC
WRITE (*,1002)

READ (*,%) XDMIN, XDMAX, IXD
XDMIN=XDMIN*L

XDMAX=XDMAX*L

WRITE (*,1003)

READ (*,*) U

WRITE(*,1100)

READ (*,*) TL

DH =(IZ-NRDOT)*(MASS-YVDOT)-

& (MASS*XG~-YRDOT) *(MASS*XG~NVDOT)

AAll=( (IZ-NRDOT)*YV-(MASS*XG-YRDOT)*NV)/DH
AA12=( (IZ-NRDOT)*(-MASS+YR)-

& (MASS*XG-YRDOT) *(-MASS*XG+NR) ) /DH
AA2le{ (MASS-YVDOT)*NV-(MASS*XG-NVDOT)*YV)/DH
AA22=( (MASS-YVDOT) *(-MASS*XG+NR)-

& (MASS“XG-NVDOT ) *(-MASS+YR) ) /DH
BBlle((IZ-NRDOT)*YDRS-(MASS*XG-YRDOT)*NDRS)/DH
BB12={(1Z~-NRDOT)*YDRB-(MASS*XG-YRDOT)*NDRB)/DH
BB21=( (MASS-YVDOT) *NDRS-(MASS*XG-NVDOT) *YDRS ) /DH
BB22«( (MASS-YVDOT) *NDRB- ( MASS*XG-NVDOT) *YDRB ) /DR

WRITE (*,1004)
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READ (*,*) RATIO

BBl=BBl11+RATIO*BB12
BB2=BB21+RATIO*BB22

EPS =1.D-5
ILMAX=1500

DO 1 I=1,ITC
WRITE (*,2001) I,1ITC
TC=TCMIN+(I-1)*(TCMAX-TCMIN)/(ITC-1)
TCD=TC*L/U
POLEC=1.0/TCD
AD1=3.0*POLEC
AD2=3.0*POLEC#**2
AD3=POLEC**3
Al=BBl*U*U
Bl=BB2*U*U
Cl=-AD1-(AA11+AA22)*U
A2=(BBl1*AA22-BB2*AAl12)*U**3
B2=(BB2*AA11-BB1*AA21)*U*+*3
K1=AD3/((BB2*AA11-BB1*AA2]1)*U#**3)
C2=AD2-(AA11*AA22-AA12*AA21)4U**24+BB2*U*U*K1
K2=(C1#B2-C2*Bl)/(Al1*B2-A2*Bl)
K3=(C2*A1-C1#A2)/(A1*B2-A2*Bl)
DO 2 J=1,1XD

XD=XDMIN+(J-1)*(XDMAX-XDMIN)/(IXD-1)

CALL LINEAR(K1,K2,K3,U,XD,AAll,AAl12,AA21,AA22,BB1,BB2,A,B,TL)
CALL RGG(5,5,A,B,ALFR,ALFI,BETA,0,2%222, IERR)
DO 11 I1JE=1,5
WR(1JE)=ALFR{IJE)/BETA(IJE)
WI(IJE)=ALFI(IJE)/BETA(IJE)
CONTINUE
CALL DSTABL{DEOS,WR,WI,FREQ)

IF (J.GT.1) GO TO 10
DEOSO0O=DEOS

XDOO =XD

LL=0

GO TO 2

DEOSNN=DEOS

XDNN =XD
PR=DEOSNN*DEOSOO

IF (PR.GT.0.D0) GO TO 3
LL=LL+1

1F (LL.GT.3) STOP 1000
IL=0

XDO=XDOO

XDN=XDNN
DEQSO=DEOSOQO
DEOSN=DEOSNN

XDL=XDO

XDR=XDN

DEOSL=DEOSO
DEOSR=DEOSN

XD=( XDL+XDR)/2.D0

CALL LINEAR(K1,K2,K3,U,XD,AAl1,AA12,AA21,AA22,881,BB2,A,B,TL)
CALL RGG(S5,5,A,B,ALFR,ALFI,BETA,0,222, 1ERR)
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DO 12 1JE=1,5
WR{IJE)=ALFR{IJE)/BETA{1JE)
WI(IJE)=ALFI(1JE)/BETA(I1JE)

12 CONTINUE
CALL DSTABL(DEOS,WR,WI,FREQ)

DEOSM=DEOS
XDM=XD
PRL~DEOSL*DEOSM
PRR=DEOSR*DEOSM
1F (PRL.GT.0.D0) GO TO 5
XDO=XDL
XDN=XDM
DEOSO=DEOSL
DEOSN=DEOSM
IL=TIL+1
IF (IL.GT.ILMAX)} STOP 3100
DIF=DABS(XDL-XDN)
1IF (DIF.GT.EPS) GO TO 6
XD=XDM
GO TO 4
5 IF (PRR.GT.0.D0) STOP 3200
XDO=XDM
XDN=XDR
DEOSO=DEOSM
DEOSN=DEOSR
IL=IL+1
IF (IL.GT.ILMAX) STOP 3100
DIF=DABS ( XDM-XDR)
IF (DIF.GT.EPS) GO TO 6

XD=XDM
4 LLL=10+LL
WRITE (LLL,*) XD/L,TC
3 XDOO=XDNN
DEOSOO=DEOSNN
2 CONTINUE
1 CONTINUE

1001 FORMAT
1002 FORMAT

(' ENTER MIN, MAX, AND INCREMENTS OF TC')

(
1003 FORMAT (

(

(

ENTER MIN, MAX, AND INCREMENTS OF XD’)
ENTER U')
1004 FORMAT ENTER BOW/STERN RUDDER RATIO')
1100 FORMAT ENTER TIME LAG TL')
2001 FORMAT (215)
END

.~ e« % %=

SUBROUTINE DSTABL(DEOS,WR,WI,OMEGA)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION WR(S5),WI(S)
DEOS=-1.0D+20
PO 1 I=1,5
IF (WR{I).LT.DEOS) GO TO 1
DEOS=WR(1)
1J=1
1 CONTINUE
OMEGA=WI(1J)
OMEGA=DABS (OMEGA)
RETURN
END
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SUBROUTINE LINEAR(K1,K2,K3,U,XD,AAll,AA12,AA21,AA22,B8B1,BB2,
& A,B,TL)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION K1,K2,K3

DIMENSION A(5,5),B(5,5)

A(1,1)=0.0D0

A(1,2)=0.0D0

A(1,3)=1.0D0

A(1,4)=0.0D0

A(1,5)=0.0D0

A(2,1)=0.0D0

A(2,2)=0.0D0

A{2,3)=0.0D0

A(2,4)=0.0D0

A(2,5)=1.0D0
A(3,1)=(BBl1*U*U*K1-BB1*U*U*U*rK1*TL/XD)
A(3,2)=(AA11*U+BBl14U*U*K2-BB1*U*U*K1*TL/XD)
A(3,3)=(AA12*U+BBL*U*U*K3+BBl1*U*U*U*K1*TL*TL/(2.D0*XD))
A(3,4)=(BBL*U*U*K1/XD)
A(3,5)=(-1.D0+BB1*U*U*K14TL*TL/(2.D0*XD))
A(4,1)=U

A(4,2)=1.0D0

A{4,3)=0.0D0

A(4,4)=0.0D00

A(4,5)=0.0D0
A(S5,1)=(BB2*U*U*K1-BB2*U*U*U*K1*TL/KXD)
A(5,2)=(AA21*U+BB2*U*U*K2-BB2*U*U*K1*TL/XD)
A(5,3)=(AA224U+BB2*U*U*K3+BB2*U*U*U*K1*TL*TL/(2.D0*XD))
A(5,4)=(BB2#U*U*K] /XD)

A(5,5)=(BB2*" «° - *TL*TL/(2.D0*XD))
B(1,1)=1.0D0

B(1,2)=0.0D0

B(1,3)=0.0D0

B{1,4)=0.0D0

B(1,5)=0.0D0

B(2,1)=0.0D0

8(2,2)=1.0D0

B(2,3)=0.0D0

8(2,4)=0.000

B(2,5)=0.0D0

B(3,1)=0.0D0

B(3,2)=0.0D0
B(3,3)=(BBl*UrU*U*K1*TL*TL*TL/(6.D0*XD))
B(3,4)=0.0D0
B(3,5)=(BBl1*U*AU*K1*TL*TL*TL/(6.D0*XD))
B{4,1)=0.0D0

B(4,2)=0.0D0

B(4,3)=0.000

B(4,4)=1.000

B(4,5)=0.000

B(S,1)=0.0D0

B(5,2)=0.0D0
B(5,3)=(1.0D0+BB2*U*U*U*K1*TL*TL*TL/(6.D0*XD))
B(5,4)=0.0D0

B(5,5)=(BB2*U*U*K1*TL*TL*TL/(6.D0*XD))
RETURN
END
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APPENDIX D

PROGRAM THESISN.FOR (Time Delay - Newton'’'s Iteration Method)

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DOUBLE PRECISION K1,K2,K3,L,NR,NV,NDRS,NDRB,IZ,MASS,
& NRDOT,NVDOT

DIMENSION A(4,4),FV1{4),1v1(4),222(4,4),WR(4),WI(4)

OPEN (11,FILE«'BIF1.RES’,STATUS='NEW’)

Vehicle Parameters:
WEIGHT=435.0

12 =45.0
L =7.3

RHO =1.94
G =32.2

XG =0.0104
MASS =WEIGHT/G

YRDOT =-0.00178%0.5%RHO*L#*4
YVDOT =-0.03430*0.5%RHO*L#*#*]3
YR «+0.01187%0.5*RHO*L**3
Yv =-0,.03896%0.5+RHO*L**2
YDRS =+0.02345%0.5+RHO*L**%2
YDRB =+0,02345%0,5*RHO*L*x#*2
NRDOT =-0.00047%0.5*RHO*L**§
NVDOT =-0.00178*0.5*RHO*L**4
NR = 0.01022+0.5*RHO*L**4
NV =-0.00769*0.5*RHO*L*#3
NDRS =-0.337%0.02345*0.5*RHO*L**3
NDRB =+0.283%0.02345*0.5*RHO*XL**3

WRITE (*,1001)

READ (*,*) TCMIN, TCMAX,ITC
WRITE (*,1003)
READ (*,*) v

DH =(IZ-NRDOT)*(MASS-YVDOT)-

& (MASS*XG-YRDOT) * (MASS*XG~NVDOT)
AAll=((IZ-NRDOT)*YV-(MASS*XG-YRDOT)*NV)/DH
AA12=((IZ~-NRDOT)*(-MASS+YR)-

& (MASS*XG-YRDOT) *{ -MASS*XG+NR) ) /DH
AR21=( (MASS-YVDOT) *NV-(MASS*XG-NVDOT)*YV)/DH
AA22=( (MASS-YVDOT) *(-MASS*XG+NR) -

& (MASS*XG-NVDOT) *(~-MASS+YR) ) /DH
BBll=( (I2-NRDOT)*YDRS~(MASS*XG~YRDOT ) *NDRS ) /DH
BB12=( (I2-NRDOT) *YDRB~(MASS*XG-YRDOT) *NDRB ) /DH
BB21=( (MASS-YVDOT)*NDRS-( MASS*XG-NVDOT) *YDRS ) /DH
BB22=({MASS-YVDOT) *NDRB-(MASS*XG-NVDOT) *YDRB ) /DH

WRITE (*,1004)

READ (*,*) RATIO
BB1=BB11+RATIO*BB12
BB2=BB21+RATIO*BB22
WRITE (*,1005)

READ (*,*) TL
EPS=1.D-10
ITMAX=1000
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onnn

anon

| ]

L L ]

DO 1 I=1,ITC

WRITE (*,2001) I,ITC
TC=TCMIN+(I~1)*({TCMAX-TCMIN)/(ITC~-1)
TCD=TC*L/U

POLEC=1.0/TCD

AD1=3,0*POLEC

AD2=3 0+POLEC**2

AD3=POLEC**3

Al=BBl*U*U

Bl=BB2*U*U

Cl=-AD1-(AAl11+AA22)*V
A2=(BBl1*AR22-BB2*AA12)*U*r+*]3
B2=(BB2*AA11-BB1*AR2]1)*U#*3
Kl=AD3/((BB2*AA11-BBl1*AA21)*U4*3)
C2=AD2-(AALL*AR22-AAL12*AA21)*U**x2+BB2*U*U*K1
K2=(C1#B2-C2#Bl)/(A1*B2~-A2*Bl)
K3=(C2*A1-Cl1*A2)/(Al1*B2-A2*Bl)

Al= (AA11+BB2-AA21#*BB1l)*U*UrU+Kl

A2= (AAl11*AA22-AA12+AA2]1)*U*U+(AALL1*BB2-AA21*BBl)*U*U*U*K3+
(AA22*BB1-AA12#*BB2) *U*U*rU*K2-BB2*U*U*K1

A3=-(AAl1+AA22)*U~(BBLl*K2+BB2*K3)*U*U

B0~ (AAl11*BB2-AA21%BB1)*U*UrUsU*Kl

Bl=-(AA12*BB2-AA22*BB1)*U*U*UrK1-BB24U*UsU*K1l

B2=-BBl*U*U*K1

COMPUTE INITIAL APPROXIMATION FOR OMEGA (TL=0)

AQ=B2*A3-B1
BQ=Bl1*A2-B2*A1-BO*A3

CQ=B0*Al

DET=BQ**2-4.D0*AQ*CQ

IF (DET.LT.0.D0) GO TO 1
ZT1l=(-BQ+DSQRT(DET))/(2.0D0*AQ)
ZT2=(-BQ-DSQRT(DET))/(2.0D0*AQ)
IF (ZT1.GE.0.DO) OM=DSQRT(ZT1)
IF (ZT2.GE.0.D0) OM=DSQRT(ZT2)
ALPHAl=AQ

ALPHA2=BQ

ALPHA3=CQ

BETAl=-B2

BETA2=B0+B2*A2-B1*A3
BETA3=B1*A1-BO*A2

COMPUTE EXACT OMEGA USING NEWTON’S ITERATION

OMOLD=0OM
F=(BETA1*OMOLD**5+BETA2*OMOLD**3+BETA3*OMOLD) *DSIN(OMOLD*TL)
+(ALPHAl*OMOLD**4+ALPHA2*OMOLD**2+ALPHA3) *DCOS(OMOLD*TL)
FPRIME=(5.D0*BETAL*OMOLD**4+3 . DO*BETA2*OMOLD**2+BETAJ)
*DSIN(OMOLD*TL)+(BETA1*OMOLD**5+BETA24OMOLD**3+BETA3*OMOLD)
*TL*DCOS(OMOLD#TL)+(4.DO*ALPHA1*OMOLD**3+2 . DO*ALPHA2*OMOLD)
*DCOS(OMOLD*TL)~ (ALPHAl1*OMOLD**4+ALPHA2*OMOLD* *2+ALPHA3)
*TL*DSIN{OMOLD*TL)

IFf (FPRIME.EQ.0.D0) STOP 1112

IF (F.EQ.0.D0) GO TO 2

OMNEW=OMOLD-F/FPRIME

OMDIF=DABS (OMNEW-OMOLD)

IF (OMDIF.LE.EPS) GO TO 2
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1001
1003
1004
1005
2001

OMOLD=OMNEW

IT=IT+1
IF (IT.GT.ITMAX) STOP 1111
GO TO 3
OM=OMNEW
XDNUM=DSQRT{ (BO-B2#4OM**2 ) x424(B1*0OM) **2)
XDDEN=OM*DSQRT( (AL-A3*OM**2)* 424+ (A2*OM-OM*#3 ) x%2)
XD=XDNUM/XDDEN
XD=XD/L
WRITE(11,*) XD,TC,OM
CONTINUE
FORMAT (' ENTER MIN, MAX, AND INCREMENTS OF TC’)

FORMAT ('’ ENTER U’)

FORMAT (' ENTER BOW/STERN RUDDER RATIO’)
FORMAT (' ENTER TIME LAG’)

FORMAT (215)

END
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